Equivalent GC systems performance for regulatory method compliance and validation

Jul 25 2022

作者:Giulia Riccardino, David Lee,和Cristian Cojocariu, Thermo Fisher Scientific, Runcorn,UK on behalf of Thermo Fisher Scientific Pte Ltd Chromatography & Mass Spectrometry Division

Free to read



As part of the method transfer and validation, federal and governmental agencies, such as the United States Food and Drug Administration (US-FDA), and the European Medicines Agency (EMA) released specific guidelines [1,2]. Moreover, the USP Chapter 621 of the current United States Pharmacopeia has suitability procedures to test analytical methods and demonstrate equivalency when transferring them from one system to another [3]. This is also applicable for GC methods where strict chromatographic separation criteria are defined.

In this paper, two examples of how the Thermo Scientific™ TRACE™ 1300 and 1600 Series Gas Chromatograph systems perform with typical, well-known GC methods for pharmaceutical and food industry are detailed, demonstrating the compatibility with common consumables such as liners and capillary columns, simplifying the method portability assuring equivalency of the analytical performance. The instrument conditions are not included herein. Please refer to the full paper (WP-74062) for information on instrument conditions.

Residual solvent analysis in pharmaceutical products according to USP <467> method



Results and discussion

Procedure A - Screening of unknown residual solvents
原液、标准液和测试液按照USP <467>方法制备。在当地购买了一种非处方乙酰水杨酸(分散阿司匹林,75mg),并根据图1中的USP <467>流程进行分析。

System suitability criteria for sensitivity (peak-to-peak (PtP) signal-to-noise ratio (S/N)) and chromatographic resolution (Rs) were met with:

• S/N > 5:1 for 1,1,1-trichloroethane in Class 1 standard solution
• S/N >3:1 for all peaks in Class 1 system suitability solution (Figure 2)
• Rs between acetonitrile/dichloromethane >1 in Class 2A standard solution (Figure 2).

The innovative system design with direct connection between the gas chromatograph and the autosampler combined with the high inertness and the precise temperature and flow controls of the TRACE 1310 Gas Chromatograph allowed for an efficient chromatographic process ensuring Gaussian peak shapes with average asymmetry factor (As) of 1.2. Peak responses obtained for the un-spiked sample were lower than the corresponding peaks in Class 1 and Class 2 standard injections. According to the regulation, the test solution met the requirements for residual solvent content with no other actions required.


本研究的结果表明,TRACE 1310 GC-FID符合USP <467>要求,符合规范的c-GMP制药实验室所需的色谱分离适宜标准。方法参数的等效性确保了不同HS-GC品牌的方法使用阀-回路顶空技术的安全可移植性。
Separation of 37 fatty acid methyl esters according to AOAC method 996.06 by GC-FID


Food fat mainly consists of triglycerides and assessing the fat (trans and saturated) composition of food products as part of the nutritional information is a fundamental test for the food industry. The AOAC method 996.06 describes the determination of total, saturated and unsaturated fat in foods using capillary GC-FID by a multiple steps procedure: hydrolytic extraction followed by the derivatisation (methylation) of fatty acids to produce fatty acids methyl esters (FAMEs) which are the derivatives suitable for GC analysis [7].

A TRACE 1610 Gas Chromatograph configured with an Instant Connect split/splitless SSL Injector and an Instant Connect Flame Ionisation Detector (FID) was coupled with an AI/AS 1610 Autosampler and used to assess the chromatographic separation performance according to AOAC method 996.06.
A standard solution was prepared by diluting Restek Food Industry FAMEs mix (30 mg/mL in dichloromethane) (P/N 35077) to 1000 μg/mL in dichloromethane/hexane.

Results and discussion

Chromatographic resolution (Rs) is fundamental for FAMEs separation, identification and quantitation and specific resolution requirements for critical peaks pair are included in AOAC method 996.06: (Rs) ≥ 1.0 for FAMEs pair of adjacent peaks (C18:3 - C20:1 and C22:1 – C23:3 – C20:4).
The chromatographic profile of 37 FAMEs separation obtained with TRACE 1610 Gas Chromatograph (equipped with Restek Rt-2560 column) is shown in Figure 2; critical pair peaks are highlighted, and the achieved resolution meets and exceeds the requirements. Peak identification and retention times are reported in Table 1.


The TRACE 1610 Gas Chromatograph equipped with Restek RT-2560 100 m, 0.25 mm, 0.2 μm capillary column is suitable for FAMEs separation in food samples according to AOAC method 996.06, meeting or exceeding resolution requirements and providing reliable peaks integration and quantification.



1. EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2** Committee for Medicinal Products for Human Use (CHMP).
2. FOOD AND DRUG ADMINISTRATION OFFICE OF REGULATORY AFFAIRS ORA Laboratory Manual Volume II, ORA-LAB.5.4.5 Methods, Method Verification and Validation Revision #: 02 Revision June 2020.
3. USP Chapter 621 of the current United States Pharmacopeia.
4. Impurities: Guideline for Residual Solvents Q3C(R6), ICH Harmonised Guidelines, International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human use, 2016.
5. General Chapter USP <467> Organic Volatile impurities, Chemical Tests, United States Pharmacopeia, 2012 and Interim Revision Announcement Official November 1, 2019; Official December 1, 2020 <467> Residual Solvents.
6. Thermo Scientific White Paper 10705- Investigation of key parameters for a smooth method transfer to the new Thermo Scientific TriPlus 500 Headspace Autosampler
7. AOAC 996.06-1996 (2010) - Fat (Total, Saturated, and Unsaturated)

Please refer to WP-74062 for the full paper which will include:
- Determination of gasoline range organics (GRO) in water by static headspace gas chromatography
- Separation of US EPA 16 priority polycylic aromatic hydrocarbons by GC-FID

For the full paper (WP-74062), please contact

Free to read